Robot climbs walls
Wielding two claws, a motor and a tail that swings like a grandfather clock's pendulum, a small robot named ROCR ("rocker") scrambles up a carpeted, 8-foot wall in just over 15 seconds - the first such robot designed to climb efficiently and move like human rock climbers or apes swinging through trees.
"While this robot eventually can be used for inspection, maintenance and surveillance, probably the greatest short-term potential is as a teaching tool or as a really cool toy," says robot developer William Provancher, an assistant professor of mechanical engineering at the University of Utah.
His study on development of the ROCR Oscillating Climbing Robot is set for online publication by Transactions on Mechatronics, a journal of the Institute of Electrical and Electronics Engineers and American Society of Mechanical Engineers.
Provancher and his colleagues wrote that most climbing robots "are intended for maintenance or inspection in environments such as the exteriors of buildings, bridges or dams, storage tanks, nuclear facilities or reconnaissance within buildings."
But until now, most climbing robots were designed not with efficiency in mind, only with a more basic goal: not falling off the wall they are climbing.
One previous climbing robot has ascended about four times faster than ROCR, which can climb at 6.2 inches per second, but ROCR achieved 20 percent efficiency in climbing tests, "which is relatively impressive given that a car's engine is approximately 25 percent efficient," Provancher says.
The robot's efficiency is defined as the ratio of work performed in the act of climbing to the electrical energy consumed by the robot, he says.
Provancher's development, testing and study of the self-contained robot was co-authored by Mark Fehlberg, a University of Utah doctoral student in mechanical engineering, and Samuel Jensen-Segal, a former Utah master's degree student now working as an engineer for a New Hampshire company.
Some previous climbing robots have been large, with two to eight legs. ROCR, in contrast, is small and lightweight: only 12.2 inches wide, 18 inches long from top to bottom and weighing only 1.2 pounds.
The motor that drives the robot's tail and a curved, girder-like stabilizer bar attach to the robot's upper body. The upper body also has two small, steel, hook-like claws to sink into a carpeted wall as the robot climbs. Without the stabilizer, ROCR's claws tended to move away from the wall as it climbed and it fell.
The motor drives a gear at the top of the tail, causing the tail to swing back and forth, which propels the robot upward. A battery is at the end of the tail and provides the mass that is necessary to swing the robot upward.
"ROCR alternatively grips the wall with one hand at a time and swings its tail, causing a center of gravity shift that raises its free hand, which then grips the climbing surface," the study says. "The hands swap gripping duties and ROCR swings its tail in the opposite direction."
ROCR is self-contained and autonomous, with a microcomputer, sensors and power electronics to execute desired tail motions to make it climb.
Provancher says that to achieve efficiency, ROCR mimics animals and machines.
Before testing the robot itself, Provancher and colleagues used computer software to simulate ROCR's climbing, using such simulation to evaluate the most efficient climbing strategies and fine-tune the robot's physical features. Then they conducted experiments, varying how fast and how far the robot's tail swung, to determine how to get the robot to climb most efficiently up an 8-foot-tall piece of plywood covered with a short-nap carpet.
The robot operated fastest and most efficiently when it ran near resonance - near the robot's natural frequency - similar to the way a grandfather clock's pendulum swings at its natural frequency. With its tail swinging more slowly, it climbed but not as quickly or efficiently.
The researchers found it achieve the greatest efficiency - 20 percent - when the tail swung back and forth 120 degrees (or 60 degrees to each side of straight down), when the tail swung back and forth 1.125 times per seconds and when the claws were spaced 4.9 inches apart. When the tail swung at two times per second, it was too fast and ROCR jumped off the wall, and was caught by a safety cord so it wasn't damaged.
Source: University oif Utah News Center
More info
Video of ROCR climbing is in the last 25 seconds hereUniversity of Utah's College of Engineering Extra:
Tell a friend To News Overview To News Archive Sponsored
View the Original article
"While this robot eventually can be used for inspection, maintenance and surveillance, probably the greatest short-term potential is as a teaching tool or as a really cool toy," says robot developer William Provancher, an assistant professor of mechanical engineering at the University of Utah.
His study on development of the ROCR Oscillating Climbing Robot is set for online publication by Transactions on Mechatronics, a journal of the Institute of Electrical and Electronics Engineers and American Society of Mechanical Engineers.
Provancher and his colleagues wrote that most climbing robots "are intended for maintenance or inspection in environments such as the exteriors of buildings, bridges or dams, storage tanks, nuclear facilities or reconnaissance within buildings."
But until now, most climbing robots were designed not with efficiency in mind, only with a more basic goal: not falling off the wall they are climbing.
One previous climbing robot has ascended about four times faster than ROCR, which can climb at 6.2 inches per second, but ROCR achieved 20 percent efficiency in climbing tests, "which is relatively impressive given that a car's engine is approximately 25 percent efficient," Provancher says.
The robot's efficiency is defined as the ratio of work performed in the act of climbing to the electrical energy consumed by the robot, he says.
Provancher's development, testing and study of the self-contained robot was co-authored by Mark Fehlberg, a University of Utah doctoral student in mechanical engineering, and Samuel Jensen-Segal, a former Utah master's degree student now working as an engineer for a New Hampshire company.
Some previous climbing robots have been large, with two to eight legs. ROCR, in contrast, is small and lightweight: only 12.2 inches wide, 18 inches long from top to bottom and weighing only 1.2 pounds.
The motor that drives the robot's tail and a curved, girder-like stabilizer bar attach to the robot's upper body. The upper body also has two small, steel, hook-like claws to sink into a carpeted wall as the robot climbs. Without the stabilizer, ROCR's claws tended to move away from the wall as it climbed and it fell.
The motor drives a gear at the top of the tail, causing the tail to swing back and forth, which propels the robot upward. A battery is at the end of the tail and provides the mass that is necessary to swing the robot upward.
"ROCR alternatively grips the wall with one hand at a time and swings its tail, causing a center of gravity shift that raises its free hand, which then grips the climbing surface," the study says. "The hands swap gripping duties and ROCR swings its tail in the opposite direction."
ROCR is self-contained and autonomous, with a microcomputer, sensors and power electronics to execute desired tail motions to make it climb.
Provancher says that to achieve efficiency, ROCR mimics animals and machines.
Before testing the robot itself, Provancher and colleagues used computer software to simulate ROCR's climbing, using such simulation to evaluate the most efficient climbing strategies and fine-tune the robot's physical features. Then they conducted experiments, varying how fast and how far the robot's tail swung, to determine how to get the robot to climb most efficiently up an 8-foot-tall piece of plywood covered with a short-nap carpet.
The robot operated fastest and most efficiently when it ran near resonance - near the robot's natural frequency - similar to the way a grandfather clock's pendulum swings at its natural frequency. With its tail swinging more slowly, it climbed but not as quickly or efficiently.
The researchers found it achieve the greatest efficiency - 20 percent - when the tail swung back and forth 120 degrees (or 60 degrees to each side of straight down), when the tail swung back and forth 1.125 times per seconds and when the claws were spaced 4.9 inches apart. When the tail swung at two times per second, it was too fast and ROCR jumped off the wall, and was caught by a safety cord so it wasn't damaged.
Source: University oif Utah News Center
More info
Video of ROCR climbing is in the last 25 seconds hereUniversity of Utah's College of Engineering Extra:
Tell a friend To News Overview To News Archive Sponsored
View the Original article
0 komentar:
Posting Komentar
Silahkan isi komentar anda..